ACTIVATION OF POLYHALOALKANES BY PALLADIUM CATALYST. PALLADIUM CATALYZED OXIDATION OF ALCOHOLS TO CARBONYL COMPOUNDS WITH CARBON TETRACHLORIDE

Hideo NAGASHIMA and Jiro TSUJI*

Department of Chemical Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152

 ${\rm Pd}\left({\rm OAc}\right)_2$ and ${\rm PdCl}_2$ are good catalyst for the oxidation of alcohols to carbonyl compounds with ${\rm CCl}_4$ in the presence of bases. Primary and secondary alcohols are oxidized to esters and ketones in high yields, respectively.

In a previous paper, we have reported the palladium catalyzed addition reaction of ${\rm CCl}_4$ to olefins. 1) In our further studies on the palladium catalyzed activation of polyhaloalkanes, we found that alcohols can be oxidized to carbonyl compounds with ${\rm CCl}_4$ by using a palladium catalyst.

The oxidation was carried out in the presence of bases such as ${\rm K_2CO_3}$ with a catalytic amount of ${\rm PdCl_2}$ or ${\rm Pd(OAc)_2}$ by heating a mixture of alcohol and ${\rm CCl_4}$ (ca. 5 equiv.). As shown in the table, primary alcohols are oxidized to the corresponding esters, and secondary alcohols are oxidized cleanly to ketones. Benzyl alcohol is somewhat exceptional and affords a mixture of benzaldehyde, benzyl benzoate, and dibenzyl ether. It was confirmed by G.L.C. analysis that equimolar amounts of acetone and chloroform were formed by the reaction of 2-propanol with ${\rm CCl_4}$. Thus, the overall reaction of secondary alcohols can be expressed by the following equation.

$$R \longrightarrow OH + CCl_4 + base \longrightarrow R \longrightarrow R \longrightarrow O + HCCl_3 + base \cdot HCl$$

In a typical example, to a mixture of PdCl $_2$ (2 mg, 0.01 mmol) and K $_2$ CO $_3$ (138 mg, 1 mmol) was added 2-octanol (130 mg, 1 mmol) dissolved in CCl $_4$ (1 mL), and the suspension was gently refluxed under argon atmosphere. After 24 h, the mixture was filtered to remove potassium salts and concentrated. Purification by column chromatography (hexane-ether) afforded 2-octanone in 65% yield.

Two mechanisms can be proposed for the reaction. The reaction may proceed through the formation of trichloromethyl-alkoxy-palladium complex 1 as one explanation. ^2-4) Another is the formation of the free radical intermediate 2.5,6 Although no intermediate was detected, coordination or interaction of CCl₄ and alcohol with palladium seems to play an important role in this reaction.

Further investigation of the palladium catalyzed activation of polyhaloalkanes and the reaction of other functionalized alcohols with ${\rm CCl}_{\it A}$ is in progress.

Table

	Cat.(%)	Temp(°C)	Time(h)	Product	Yield(%)
ОН	1	80	24	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	73
ОН	2	80	7	PhCHO (57) PhCO ₂ CH ₂ Ph (35) PhCH ₂ OCH ₂ Ph (8)	70
ОН	1	80	24		65
ОН	2	80	72	= 0	63
ОН	2	80 120	24 24		55 75
OH	2	80 120	72 24		35 55

References

- 1) J.Tsuji, K.Sato, and H.Nagashima, Chem. Lett., 1981, 1169.
- 2) A similar intermediate as 1 was suggested by Tamaru et al, for the oxidation of alcohols with halobenzenes in the presence of palladium-phosphine complexes. 3,4)
- 3) Y. Tamaru, K. Inoue, Y. Yamada, and Z. Yoshida, Tetrahedron Lett., 1981, 1801.
- 4) Y.Tamaru, Y.Yamamoto, Y.Yamada, and Z.Yoshida, Tetrahedron Lett., 1979, 1401.
- 5) We found that the oxidation of alcohols with ${\rm CCl}_4$ also proceeded using other transition metal catalysts, such as ${\rm RuCl}_2({\rm PPh}_3)_3$, ${\rm CuCl}$, ${\rm Fe}({\rm CO})_5$, and ${\rm Mo}({\rm CO})_6$, at elevated temperature. It was reported that the Ru complex was a useful catalyst for the reduction of 1,1,1-trichloroalkanes in the presence of 2-propanol to form 1,1-dichloroalkanes as expressed by the following equation. 6

$$CC1_3$$
-R + 2 \longrightarrow OH $\xrightarrow{[Ru]}$ CHCC1₂-R + \longrightarrow =0 + \longrightarrow -C1

6) Y.Sasson and G.L.Rempel, Synthesis, 1975, 448.

(Received June 24, 1981)